If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u^2+12u+18=0
a = 1; b = 12; c = +18;
Δ = b2-4ac
Δ = 122-4·1·18
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{2}}{2*1}=\frac{-12-6\sqrt{2}}{2} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{2}}{2*1}=\frac{-12+6\sqrt{2}}{2} $
| -22=v+-16 | | a^2-3a-8=0 | | 27=-3y+7(y+5) | | 3w+2(w-5)=5 | | 11/2+0.6x=16 | | 159=-u+226 | | |7t-4|=10 | | -y+96=271 | | 5x–2=20+9x | | 28-y=157 | | -7=a+-17 | | 2^122=100^x | | 2^122=10^x | | c+16=-4 | | -2x2+16x+1=0 | | 5x=15x(6x+6) | | 3=4x+-17 | | 1=x+-4 | | p3+9=11 | | 14=y+-4 | | w-7=198 | | 125=25-5x | | 3v+6v—19=-91 | | 6=-12+x | | 0.08(y-7)+0.18y=0.04y-2.1 | | 144=6x-12 | | 7a-5=115 | | /14x+7=103 | | 63=7x+14 | | 3x^2+25x+36=0 | | 5(8x)= | | 0.6x=35 |